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Coherent population trapping of Bose-Einstein condensates:
Detection of phase diffusion
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Abstract. Two Bose-Einstein condensates in different Zeeman sublevels can be decoupled from driving
light fields in coherent population trapping. A condensate pair with a deterministic entanglement and a
controllable value of the relative phase may be prepared by selecting the phase difference between the
coherent light fields. The rate of the condensate phase diffusion may be determined from the two-photon
resonant absorption of radiation.

PACS. 03.75.Fi Phase coherent atomic ensemble (Bose condensation) – 42.50.Gy Effects of atomic
coherence on propagation, absorption, and amplification of light – 05.30.Jp Boson systems

In several recent experiments on dilute gas alkali Bose-
Einstein condensates (BECs) two and multiple condensate
systems were created in different sublevels of the same
atom [1–5]. The condensate mixtures have been realized
in magneto-optical traps [1,3–5], as well as in an optical
dipole trap [2], which uses optical forces to trap atoms.
In this paper we study the quantum interference effects
in two BECs driven by two light fields. Since one needs
a phase reference to observe a phase, binary mixtures of
BECs are especially useful in studies of coherence prop-
erties. We show that the coherent population trapping
(CPT) [6–9] could possibly be used as a method of measur-
ing the diffusion of the relative phase between two BECs.
In addition, BEC pairs with deterministic and controllable
value of the relative phase may be engineered using CPT.

In the first observation of a binary BEC mixture two
overlapping BECs of |F = 1, m = −1〉 and |F = 2, m = 2〉
states of 87Rb were produced using sympathetic cooling
[1]. A BEC pair of |1,−1〉 and |2, 1〉 states of 87Rb was
created by a two-photon transition [3–5]. In these exper-
iments atoms were trapped magneto-optically. An evap-
oratively cooled 23Na gas was transferred to an optical
dipole trap [2]. BECs were observed in several different
hyperfine levels. Unlike magnetic traps, dipole traps can
stably trap atoms in arbitrary spin states.

Two hyperfine states |1,−1〉 and |2, 1〉 of 87Rb in a bi-
nary mixture of BECs can be coupled by a two-photon
transition [3–5]. A microwave field excites atoms from
|1,−1〉 to an intermediate level |2, 0〉 which is coupled to
state |2, 1〉 by a radiofrequency photon. A BEC is first pre-
pared in level |1,−1〉 and a part of the condensate is then
transferred to level |2, 1〉. The relative phase between the

a e-mail: ruo@physik.uni-ulm.de
Present address: Abteilung für Quantenphysik, Universität
Ulm, 89069 Ulm, Germany.

two separated halves was determined by interfering the
atoms at a later time [5]. The observations of interference
fringes supported the previous evidence of first order co-
herence of BECs [10]. Varying the evolution time of the
two BECs before the interference measurement yielded in-
formation about the phase dynamics.

Atomic interactions give rise to diffusion of the rel-
ative phase between two BECs. The uncertainty in the
value of the phase increases until all phase information is
lost. The width of the number distribution in the ground
state has a dispersive effect on the BEC self-interactions
and the relative phase undergoes quantum collapses and
revivals [11,12]. Additional sources of phase diffusion are
spatial mode fluctuations [13] and finite temperature de-
coherence due to the interactions between condensate and
non-condensate atoms [14,15].

In this paper we study CPT [6–9] in two BECs oc-
cupying two different Zeeman sublevels. Two light beams
are assumed to drive transitions in an atomic Λ three-
level scheme. The BECs are prepared in both electronic
ground states. In CPT a coherent superposition of the
two ground states at the two-photon resonance is a non-
absorbing state. In such a superposition state the BECs
are decoupled from the driving electromagnetic fields and
the atom number states of the BECs are entangled. This
entanglement is deterministic in a sense that the relative
phase between the two BECs is controllable. The macro-
scopic quantum coherence of BECs may be established
in CPT with a particular value of the relative phase by
choosing the phase difference between the coherent light
fields. Phase diffusion, due to the atomic collisions, de-
stroys CPT in the BECs, so that the absorption is no
longer completely suppressed. We show that measuring
the absorption of light at the two-photon resonance can
determine the rate of diffusion of the relative phase be-
tween the BECs.



336 The European Physical Journal D

We have previously proposed a method of measuring
the relative phase diffusion between two BECs based on
quantum interference effects [16]. In that paper we con-
sidered a short-time response of two BECs driven by ra-
diofrequency fields for which it was possible to ignore the
radiative linewidths. In contrast, the spontaneous optical
transitions are essential for CPT. In the present case the
phase diffusion is determined by the steady-state response
of the coherent superposition of BECs established by the
spontaneously scattered light in CPT.

Interaction of light with binary BECs has previously
been proposed as a method to detect the condensate phase
by the amplification of phase coherent Raman laser beams
[17] or by spontaneous Raman scattering [18–20]. As a
consequence of the matter wave coherence behaving like
an optical two-photon coherence, atoms could even be op-
tically pumped into the BECs [21].

We consider a spatially overlapping pair of BECs with
a Λ three-level scheme of two ground states and a com-
mon excited state. The BECs occupy two different Zee-
man sublevels |1〉 = |g,m− 2〉 and |2〉 = |g,m〉. The state
|1〉 is optically coupled to the electronically excited state
|3〉 = |e,m − 1〉 by the driving field EA having a polar-
ization σ+ and a frequency ωA. Similarly, the state |2〉
is coupled to |3〉 by the driving field EB with a polar-
ization σ− and a frequency ωB. The detunings are de-
fined by δ31 ≡ ωA − ω31 and δ32 ≡ ωB − ω32, where the
transition frequency between the hyperfine levels 1 ↔ 3
(2↔ 3) is ω21 (ω32). Both light fields EA and EB propa-
gate in the positive z direction. To simplify the analysis,
we consider light scattering only into the BEC modes.
The spontaneous scattering to the BECs is stimulated by
a large number of atoms in the condensates. By sponta-
neous scattering we mean that the emission is not stim-
ulated by light, although it is stimulated by the atoms.
The decay into non-condensate center-of-mass states is
also stimulated by the Bose-Einstein statistics. However,
at very low temperatures this stimulation is much weaker
because most of the particles are in the BECs. In addition
to the Bose stimulation of spontaneous emission there is
unstimulated radiative free-space decay which is always
present. With a sufficiently large number of atoms in the
two BECs the free-space decay may be ignored.

The quantum collapse due to the BEC self-interactions
has an important effect on the phase diffusion [11,12]. If
the population of level |3〉 is small, the collisional interac-
tions are mainly between atoms in levels |1〉 and |2〉. The
collapse rate dramatically depends on the relative strength
of the three scattering lengths describing the interspecies
(u12) and intraspecies (u1 and u2) scattering of atoms in
the two ground states |1〉 and |2〉. For two perfectly over-
lapping BECs the phase collapse is strongly suppressed, if
the scattering lengths are equal. This is easily seen from
the fact that, for the condensate mode of each ground
level, the BEC self-interaction only depends on the total

particle number:
∑
i=1,2 a

†
ia
†
iaiai + 2a†1a

†
2a1a2 = N̂2 − N̂ ,

where N̂ = a†1a1 + a†2a2. Similarly, for the case of approx-
imately equal scattering lengths the nonlinearity of the
atom dynamics is reduced. In 87Rb [3,4], the scattering

lengths satisfy u1 : u12 : u2 : 1.03 : 1 : 0.97, where u1 (u2)
denotes the intraspecies scattering length for state |1,−1〉
(|2, 1〉) and u12 is the interspecies scattering length.

We write the equations of motion for the expectation
values σij ≡ 〈a

†
iaj〉/N , where ai denotes the BEC an-

nihilation operator and φi(r) is the corresponding spa-
tial wave function. The total initial number of BEC
particles is denoted by N . For simplicity, we assume
approximately equal scattering lengths and approximate
the equations of motion for atomic expectation values
to be linear. The off-diagonal element σ21 describes the
macroscopic coherence, or the off-diagonal long range or-
der (ODLRO), between the two BECs. The effect of
atomic interactions is treated by a phenomenological
damping parameter, γ, in the equation for σ21. This damp-
ing includes contributions from both the quantum effects
of the BEC self-interactions and collisions between con-
densate and non-condensate atoms. It is assumed that
these dominate over other damping mechanisms. We as-
sume a perfect spatial overlap between the two BECs re-
sulting in φ1 = φ2. The Rabi frequencies are defined by
ΩA ≡ 2

∫
d3rφ∗3φ1d31·EA/~,ΩB ≡ 2

∫
d3rφ∗3φ2d32·EB/~,

where dij denotes the electric dipole moment for the
transition i ↔ j. In the rotating-wave approximation we
obtain

σ̇11=
Γ1

2
σ33 +ΩAIm(σ31), (1a)

σ̇22=
Γ1

2
σ33 −ΩBIm(σ23), (1b)

σ̇33=− Γ1σ33 −ΩAIm(σ31) +ΩBIm(σ23), (1c)

σ̇21=i(δ23 − δ31 + iγ)σ21 +
iΩA

2
σ23 −

iΩB

2
σ31, (1d)

σ̇23=i(δ23 + iΓ2)σ23 +
iΩB

2
(σ22 − σ33) +

iΩA

2
σ21, (1e)

σ̇31 =−i(δ31−iΓ2)σ31+
iΩA

2
(σ33 − σ11)−

iΩB

2
σ21, (1f)

where Im denotes the imaginary part. For simplicity, we
have set ΩA and ΩB to be real.

In equation (1) spontaneous emission is described by
the radiative decay rates Γ1 and Γ2. We set 2Γ2 = Γ1. In
general, atoms at high densities do not respond to driv-
ing light fields individually and the scattering is modi-
fied by the presence of neighboring atoms. The decay rate
Γ1 should denote, instead of the linewidth of an isolated
atom, a collective linewidth [22,23] indicating a coopera-
tive optical response. A careful analysis of light scatter-
ing from dense atomic gases would typically require a full
quantum field theoretical approach [24]. In the context of
the present work we only note that, if, e.g., the shape of
the gas is flat and the light is shone through the thin di-
mension, multiple scattering can be negligible and Γ1 may
be described by the linewidth of an isolated atom.

In CPT the coupling of the light fields to atoms is of-
ten described in terms of symmetric and antisymmetric
coherent superpositions of the two ground states [9]. If
the magnitudes of the two Rabi frequencies are equal, the
superposition |C〉 ∝ |1〉 + exp(i∆ϕ)|2〉 can interact with
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the optical fields, where ∆ϕ = arg(Ω∗BΩA) is the phase
difference between the Rabi frequencies. However, at two-
photon resonance the transition matrix element between
level |3〉 and the superposition |NC〉 ∝ |1〉 − exp(i∆ϕ)|2〉
completely vanishes. Level |NC〉 is often referred to as a
non-coupled state. The cancelation of the oscillating elec-
tric dipole between |3〉 and |NC〉 may be explained in
terms of a destructive interference of the transition am-
plitudes induced by the two driving light fields. Because
an atom prepared in |NC〉 cannot escape by absorbing a
laser photon, it remains “trapped” in that state. On the
other hand, atoms can be optically pumped into |NC〉 via
the spontaneous emission from |3〉, because state |C〉 is
not stable against absorption. In the absence of decoher-
ence the population becomes trapped in the non-coupled
state after a few radiative lifetimes.

In the density matrix description (Eq. (1)) the elec-
tric dipole matrix elements, driven by the light fields, are
described by the coherences σ23 and σ31. In the case of
thermal atoms the coherence σ21 is present only as a re-
sult of the two-photon light coupling between levels |1〉
and |2〉. For BECs in Zeeman sublevels |1〉 and |2〉 the
coherence σ21 can exist as a consequence of the macro-
scopic quantum coherence of the BECs. As an example
we consider a situation where a BEC is first prepared
in level |1〉 and half of the BEC atoms are then coher-
ently transferred to level |2〉, so that a well-established
coherence between the two BECs is preserved. The rela-
tive phase between the two BECs vanishes and in equa-
tion (1) we have σ11 = σ22 = σ21 = 1/2. Under conditions
where the phase diffusion vanishes (γ = 0), the light fields
are two-photon resonant (δ31 = δ23), and ∆ϕ = π, this
corresponds to a steady-state situation. The BECs form
the non-coupled superposition state and the absorption
described by Im(σ31) and Im(σ23) vanishes. This is very
different from thermal atoms, in which case any coher-
ence in the absence of the driving light fields would decay
rapidly and the population trapping in |NC〉 would take
several radiative lifetimes. If the BECs are initially in the
non-coupled state |NC〉 and the non-condensate atoms in
ground levels |1〉 and |2〉 do not exhibit macroscopic quan-
tum coherence, the number of condensate atoms in CPT
could grow as a consequence of optical pumping until the
non-condensate atoms become trapped in |NC〉 as pro-
posed by Savage et al. [21]. It is interesting to emphasize
that the non-coupled state of the BECs is independent of
the radiative linewidths.

It is easy to obtain the general steady-state solution at
the two-photon resonance, δ31 = δ23, and in the absence of
phase diffusion, γ = 0, [6–9]. In the general case the Rabi
frequencies ΩA and ΩB may be complex and we obtain
for the populations σ11 = σ22 = 1/2 and for the coherence
σ21 = exp[i(∆ϕ− π)]/2 (for |ΩA| = |ΩB|). Independently
of the initial conditions the BECs become trapped in the
non-coupled superposition state |NC〉. It may be surpris-
ing that the BECs exhibit a well-defined coherence, even
though their relative phase could have initially been com-
pletely undefined. The back action of different quantum
measurement processes can establish the coherence for

BECs [12,20,25]. However, the phase information is typi-
cally expected to be lost in a coupling to an environment
if the ensemble averages of possible outcomes for measure-
ment results are considered. In the present case the coher-
ence of the BECs is established by the photons scattering
into the non-coupled superposition state, even in the en-
semble averages of all possible measurement results. The
steady-state value of the phase is deterministic, instead of
random, and independent of the measurement histories.
As shown via stochastic simulations in reference [20], the
detections of spontaneously scattered photons first estab-
lish a stochastically determined relative phase between the
BECs. If the lasers are two-photon resonant, the value of
the phase later drifts to the steady-state value determined
by the phase difference of the light fields.

The state of a BEC pair is expected to be a statisti-
cal mixture due to decoherence caused by the interactions
between condensate and non-condensate atoms [14,15]. In
that case a relative phase between the two BECs may be
prepared by measurements introducing a quantum entan-
glement between the BECs. The phase established in a
measurement process is typically stochastic [12,25] as a
result of the probabilistic outcome of a quantum measure-
ment. A BEC pair with a controllable value of the relative
phase could be prepared in CPT by choosing phase dif-
ference between the driving light fields. The coherence of
the BECs in CPT indicates an entanglement between the
atom numbers of the two BECs and the quantum state

of the BECs has the form:
∑N
n=1 cn|n,N − n〉. Recently,

deterministic entanglements in Bell-type states of trapped
ions have raised interest in the context of quantum com-
putation [26].

If the phase diffusion is non-vanishing (γ 6= 0), the two-
photon resonant non-coupled state with σ11 = σ22 = 1/2,
σ21 = exp[i(∆ϕ − π)]/2, and |ΩA| = |ΩB|, is no longer
stable. In the presence of phase diffusion, Im(σ31) and
Im(σ23) become non-zero and atoms start accumulating
in level |3〉 due to the absorption of light.

The strength of the population trapping in the non-
coupled state |NC〉 depends on the phase diffusion rate
γ. The steady-state solution of equation (1) for γ 6= 0 still
exhibits CPT if |ΩA|, |ΩB|, Γ1 � γ [8]. The atoms are
trapped in |NC〉; the population in |3〉 and the absorp-
tion of light are negligible. However, if the phase diffu-
sion is fast enough so that γ ' Γ1, the ODLRO between
the BECs vanishes and the atoms are no longer trapped
in |NC〉. The steady-state values for σ33, Im(σ31), and
Im(σ23) are not small. The phase damping parameter γ
may be determined by measuring the population in level
|3〉 or the absorption of radiation.

The steady-state solution for σ33 has a simple form
at the exact two-photon resonance (δ31 = δ23) and with
ΩA = −ΩB:

σ33 =
s/2

1 + 4δ2
31/Γ

2
1 + 3s/2 + sΓ1/(2γ)

, (2)

where s = 2Ω2
A/Γ

2
1 is the optical saturation parame-

ter. The matter wave coherence between the BECs at
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Fig. 1. A steady-state solution for (a) σ33 proportional to the
population of the excited level as a function of the detuning δ31.
(b) |σ21| proportional to the macroscopic quantum coherence
of the BECs (ODLRO). The solid line is the result without the
phase diffusion γ = 0. The dashed line represents γ = 0.1Γ1

and the dashed-dotted line represents γ = Γ1.

δ31 = δ23 is given by σ21 = Γ1σ33/(2γ) and the absorp-
tion of light by Im(σ23) = Im(σ31) = −Γ1σ33/(2ΩA).
To leading order in the small parameter γ/Γ1 we ob-
tain σ33 ' γ/Γ1, Im(σ23) ' −γ/(2ΩA), and σ21 '
1/2−γ/(sΓ1)(1+4δ2

31/Γ
2
1 +3s/2). For small δ2

31 the BECs
are in a pure state if γ � Γ1 and γΓ1 � Ω2

A.

In Figure 1 we have plotted the steady-state solutions
of (a) σ33 and (b) |σ21| from equation (1) for different val-
ues of γ/Γ1 as a function of the detuning δ31. We have
chosen ΩA = −ΩB = δ32 = 5Γ1. The solid line is the
result without the phase diffusion γ = 0. As a signa-
ture of CPT, the graph shows a strongly reduced popula-
tion in the excited level |3〉 at the two-photon resonance
(δ31 = δ32). If the field EB was resonant (δ32 = 0), the
curve would be symmetric around δ31 = 0. The dashed
line represents γ = 0.1Γ1 and the dashed-dotted line rep-
resents γ = Γ1. The accumulating population in the ex-

cited level at the two-photon resonance is clearly observed
as γ increases. The phase diffusion may be detected by
measuring the population in level |3〉 or the absorption of
light. The absorption of light, Im(σ23) and Im(σ31), as a
function of δ31 has the same shape as σ33. The narrow
resonances also appear in Re(σ23) and Re(σ31) indicating
a pronounced inversion in the dispersive response [6–9].
In (b) the light fields have established the matter wave
coherence, or ODLRO, between the two BECs at the two-
photon resonance in the absence of phase diffusion. The
reduced coherence for non-vanishing phase diffusion rates
is clearly observed.

The phase diffusion rate could possibly be observed in
CPT if Γ1 was not too large. With especially weak phase
diffusion rates [5] this may require a metastable excited
state with the radiative linewidth of the order of a hun-
dred Hz. Even if the radiative linewidth was very small,
the number of scattered photons (approximately ∝ NΓ1)
could still be large due to the Bose enhancement. We also
note that the diffusion rate may significantly vary depend-
ing, e.g., on the magnitudes of the scattering lengths. It
is also required that the decoherence introduced by the
multiple light scattering and the scattering to the non-
condensate modes is slower than the phase diffusion due
to the atomic interactions.

The atomic interactions may also introduce non-
radiative longitudinal relaxation [8]. This damping would
tend to equalize the populations of the ground levels re-
sulting in the following additional terms to equations (1a,
1b): σ̇11 = . . .−γ′(σ11−σ22) and σ̇22 = . . .−γ′(σ22−σ11).
For simplicity, we have ignored any non-radiative lon-
gitudinal relaxation. We note that this relaxation pro-
cess is inconsequential at the exact two-photon resonance
(δ31 = δ23).

In conclusion, we have proposed a method of measur-
ing the diffusion of the relative phase between two BECs in
CPT. As a consequence of phase diffusion the coherence of
the non-coupled superposition state is reduced and atoms
absorb light. We have also shown that by using CPT the
ODLRO between two BECs may be established without
measurement-induced back action, even if the BECs were
initially in a statistical mixture without any phase infor-
mation. The value of the relative phase could be prepared
deterministically, without the inherent uncertainty of the
outcome of a quantum measurement.
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